Gigabit Society – Political and regulatory aspects

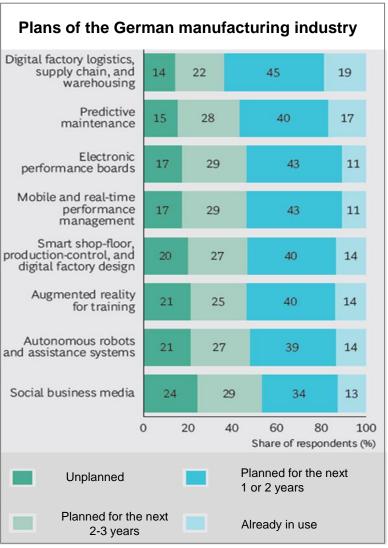
Connect Berlin – Press & Analyst Event

Dr Iris Henseler-Unger

Berlin, 23 October 2017

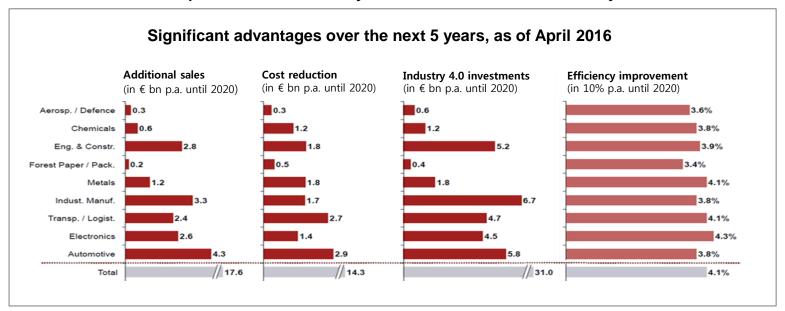
Motivation

- The rollout of gigabit networks is at the forefront of public discussion, a gigabit society shall be realised until 2025.
- Gigabit networks are the precondition for economic competitiveness.
- Currently the extent and the speed of the rollout stay behind public expectations, especially in rural areas.
- Concepts for an accelerated rollout have been proposed and need to be thoroughly discussed.
- Goal: Development of a framework design for the rollout of gigabit networks.



Drivers

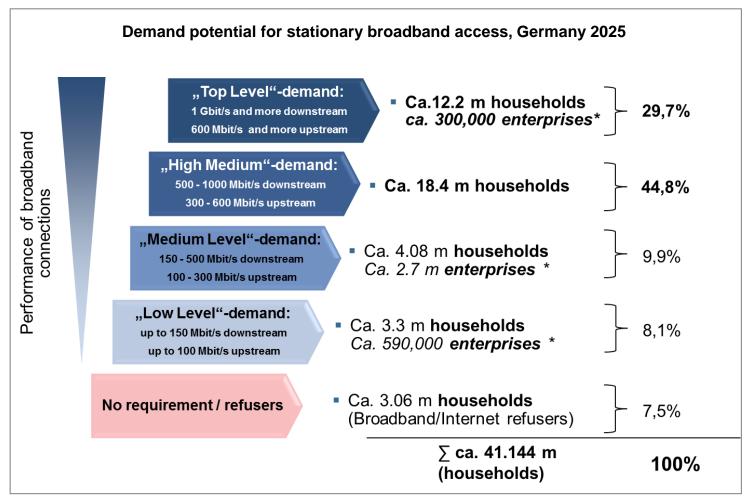
- Economical reasons
 - Competitive pressure
 - Cost reduction
 - Development of future proofed business cases
- Regulatory obligations (e.g. eCall, smart meter)



Source: In accordance with BCG (2016).

Economic implications

- Roland Berger: Until 2025 additional annually value added of 250 bn € in Europe
- Cisco: Additional annually German growth of 2% in the next 10 years
- PwC: Investment plans of annually 31 bn € for the next 5 years



Source: In accordance with PwC (2016).

Telecommunication 4.0 Investment in gigabit networks

Investment in gigabit networks

Source: WIK-Market Potential Model

^{*} Demand estimates for business have not been updated, but have been integrated into the results of household updates without new calculations.

Investment in gigabit networks

"Very high-capacity network" means an **electronic communications network** which

- either consists wholly of optical fibre elements at least up to the distribution point at the serving location or
- which is capable of delivering under usual peak-time conditions similar network performance in terms of
 - available down- and uplink bandwidth,
 - > resilience,
 - > error-related parameters, and
 - > latency and its variation.

Investment in gigabit networks

	Downstream (Mbit/s)	Upstream (Mbit/s)	Packet loss	Latency
Basic Internet	≈20	≈16	0	О
Homeoffice/VPN	≈250	≈250	+	+
Cloud Computing	≈250	≈250	+	++
Conventional TV (4K/Ultra-HD)	≈90	≈20	++	+
Progressive TV (8K/)	≈300	≈60	++	+
Communication	≈8	≈8	++	+
Videocommunication (HD)	≈25	≈25	++	++
Gaming	≈300	≈150	++	++
E-Health	≈50	≈50	++	+
E-Home/E-Facility	≈50	≈50	0	0
Mobile-Offloading	≈15	≈12	0	0

O = Low importance/significance

+ = High importance/significance

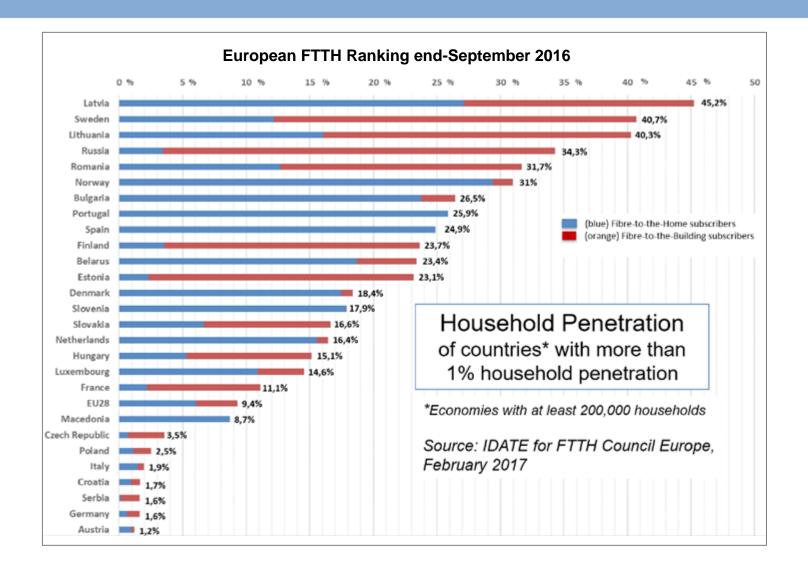
++ = Very high importance/significance

Source: WIK.

Investment in gigabit networks

Transmission technology	FTT	Bandwidth	Length limitation	individual/ shared	symmetr./ asymmetr.	Standard	Maturity	ODF unbund.	VULA (L2)
Copper pair		[Gbit/s]	[m]						
ADSL2+	FTTC	0,01	2.600	i	а	У	У	n	У
VDSL2	FTTC	0,05	400	i	а	У	У	n	У
VDSL2 Vectoring	FTTC	0,09	400	i	а	У	У	n	У
VDSL2 Supervect.	FTTC	0,25	300	i	а	У	У	n	У
G.fast	FTTS/dp	2 x 0,5	250	i	а	У	У	n	У
XG.fast	FTTB	2 x 5	50	i	а	n	+ 2 Y	n	У
Coax									
Docsis 3.0	fibre node	1,2	160.000	S	а	У	У	n	n
Docsis 3.1	fibre node	10	160.000	S	а	У	У	n	n
Docsis 3.1 FD/XG-Ca.	deep fibre	10	160.000	S	S	У	+ 4 Y	n	?
Fibre									
GPON (PMP)	FTTB/H	2,5	20.000	S	а	У	У	n	У
XG.PON	FTTB/H	10	40.000	S	a/s	У	У	n	У
XGS.PON	FTTB/H	10	40.000	S	S	У	У	n	У
TWDM GPON	FTTB/H	4 - 8 x 10	40.000	S	a/s	У	У	4 - 8 Ops	У
DWDM GPON	FTTB/H	1000 x 1	100.000	i	S	n	+ 4 Y	У	У
Ethernet P2P	FTTH	n x 100	80.000	i	S	У	У	У	У

Source: WIK.


Investment in gigabit networks

Future proofed scenario

- More fibre coverage urgently needed nationwide
- Copper, coax and wireless only in use for short/very short distances

Investment in gigabit networks

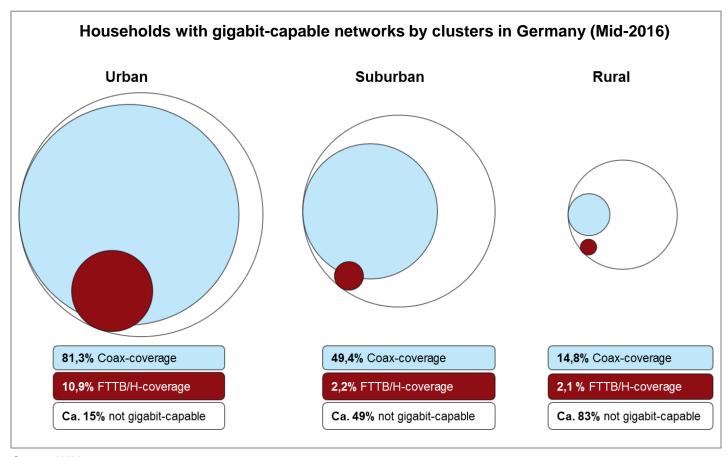
Examples for political initiatives:

- National
 - White Paper Digital Platforms, Federal Ministry of Economic Affairs and Energy
 - Consultation on price regulation, Federal Network Agency
 - Subsidies in rural areas
- European
 - Proposal for a Directive of the European Parliament and of the Council establishing the European Electronic Communications Code (Recast)

Examples

- Vouchers
- Subsidies
- Regulation

"Gigabit vouchers"


- Assessment
 - > Demand stimulation, addresses hen-egg-problem
 - Positive effects, especially for SMEs
 - Example UK

State aid on a high level

- Assessment
 - Reasonable in regions without a market-driven rollout
 - Efficient design of state aid
 - Time consuming bureaucratic approach
 - Problems to manage rollout in the battlefield of private investment, competition of technologies and business models
 - ➤ Interaction with regulation

EU Recast

Exempt from access regulation for **cooperation models** with participation of SMP operators

- Assessment
 - Cooperation models contribute to cost reductions and risk sharing.
 - Cooperation models increase the degree of capacity utilisation.
 - Cooperation models promote and accelerate the commercial rollout.
 - Cooperation models facilitate the inclusion of investors from outside the industry
 - > But:

Competition analysis by regulatory / competition agencies generally necessary

if SMP companies participate in cooperation models

→ danger of collusive oligopols

EU Recast

- Exempt from access regulation for wholesale-only networks with participation of SMP operators
- Assessment
 - Wholesale-only networks separate of network and service level.
 - Wholesale-only networks prevent discrimination.
 - Wholesale-only networks provide relatively high planning reliability.
 - Wholesale-only networks attract long-term orientated investors.
 - Wholesale-only networks provide benefits especially for rural and undersupplied areas.
 - > But:

Regulatory agencies should analyse the role of SMP network operators.

Conclusions

Conclusions

- A whole bunch of ideas to foster FTTH-deployment not every initiative for itself convincing
- More important growing governmental and societal commitment
- Governments should implement a clear and binding strategy 2025 for gigabit networks.
- The rollout of gigabit networks is an expensive and ambitious task that will last several years. Therefore the preconditions must be set today if Europe intends to achieve a gigabit society until 2025.
- A modification of the regulations framework must ensure planning reliability for the investors and a reliable regulatory regime. However, the framework must be able to react flexibly to market developments.
- The goal of a gigabit society can not be achieved without competition. A regulatory relaxation must not have counterproductive effects e.g. competitive restraints and a reduction of investment incentives.
- Private and business demand benefit alike from the heterogeneity of the market and its business models.

WIK-Consult GmbH

Postfach 2000

53588 Bad Honnef

Deutschland

Tel.:+49 2224-9225-0

Fax: +49 2224-9225-68

eMail: info@wik-consult.com

www.wik-consult.com