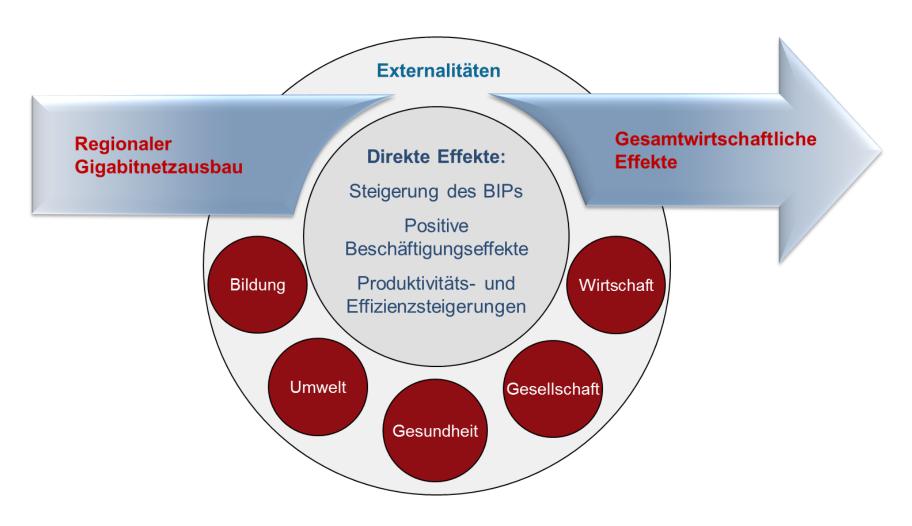

Glasfaser, CAT, Vectoring und 5G: Wie sieht die Infrastrukturlandkarte der Zukunft aus?

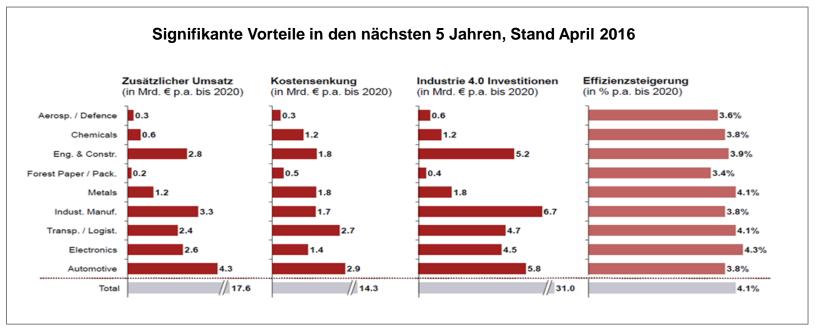
Dr. Iris Henseler-Unger Geschäftsführerin WIK GmbH Frankfurt, 07. Juni 2017 8. Hessischer Breitbandgipfel

Gliederung


- (1) Herausforderung Digitalisierung
- (2) Technologische Optionen
- (3) Stand heute
- (4) Fazit

(1) Herausforderung Digitalisierung

Wissenschaftliches Institut für Infrastruktur und Kommunikationsdiens


Gesamtwirtschaftliche Effekte des Breitbandausbaus

Wissenschaftliches Institut für Infrastruktur und Kommunikationsdie

Gesamtwirtschaftliche Wirkungen der Industrie 4.0

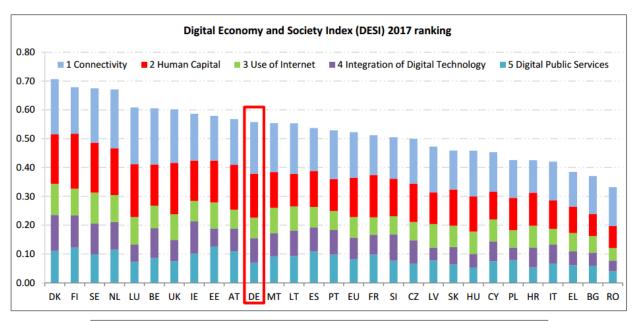
- Roland Berger: bis 2025 europaweit zusätzliches jährliches Wertschöpfungspotenzial von 250 Mrd. €
- Cisco: zusätzliches jährliches Wachstum von 2% in den nächsten 10 Jahren in D
- PwC: Investitionspläne in den nächsten 5 Jahren 31 Mrd. € jährlich

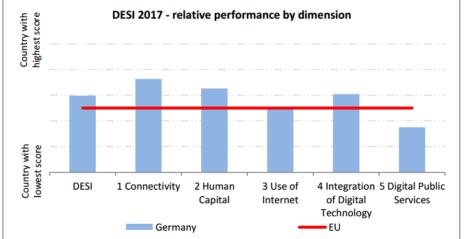
Quelle: In Anlehnung an PwC (2016).

Wissenschaftliches Institut für Infrastruktur und Kommunikationsdier

Prognose über Bandbreiten- und QoS-Anforderungen der einzelnen Anwendungskategorien in 2025

Anwendungskategorie	Downstream (Mbit/s)	Upstream (Mbit/s)	Paket- verlust	Latenz
Basic Internet	≈20	≈16	0	0
Homeoffice/VPN	≈250	≈250	+	+
Cloud Computing	≈250	≈250	+	++
Konventionelles TV (4k/Ultra-HD)	≈90	≈20	++	+
Progressives TV (8k,)	≈300	≈60	++	+
Kommunikation	≈8	≈8	++	+
Videokommunikation (HD)	≈25	≈25	++	++
Gaming	≈300	≈150	++	++
E-Health	≈50	≈50	++	+
E-Home/E-Facility	≈50	≈50	0	0
Mobile-Offloading	≈15	≈12	0	0

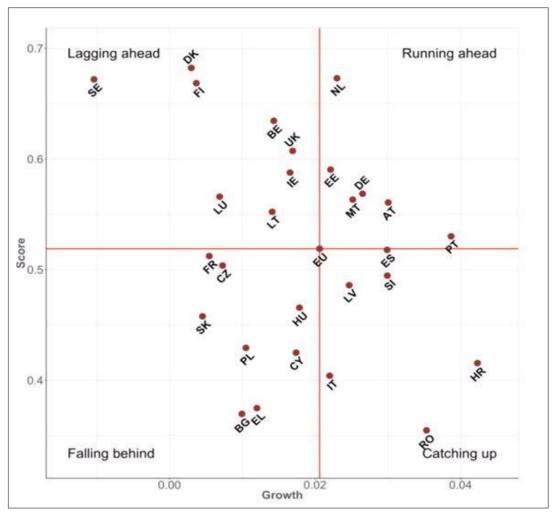

O = Geringe Bedeutung/Wichtigkeit


+ = Hohe Bedeutung/Wichtigkeit

++ = Sehr hohe Bedeutung/Wichtigkeit

Quelle: WIK.

Deutschland im internationalen Vergleich (I)



Quelle: European Commission (2017): Digital Economy and Society Index 2017 – Deutschland.

Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste

Deutschland im internationalen Vergleich (II)

Quelle: DESI / I-DESI Digital Economy and Society Index, Alexandre Mateus, European Commission DG Connect.

(2) Technologische Optionen

Wissenschaftliches Institut für Infrastruktur und Kommunikationsdien

Technologie-Übersicht

Festnetz

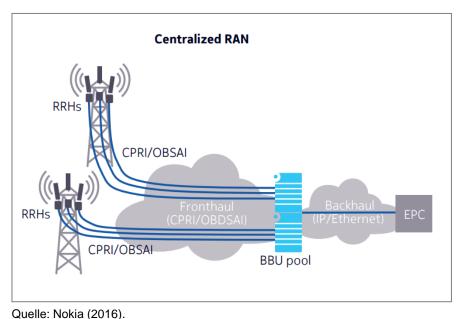

Übertragungs- technik	FTT	Bandbreite	Längenbe- schränkung	individuell/ shared	symmetr./ asymmetr.	Standard	marktreif	ODF ent- bündelbar	VULA (L2)	
Kupfer-DA		[Gbit/s]	[m]							
ADSL2+	FTTC	0,01	2.600	i	a	j	j	n	j	
VDSL2	FTTC	0,05	400	i	а	j	j	n	j	
VDSL2 Vectoring	FTTC	0,09	400	i	а	j	j	n	j	
VDSL2 Supervect.	FTTC	0,25	300	i	а	j	j	n	j	
G.fast	FTTS/dp	2 x 0,5	250	i	а	j	j	n	j	
XG.fast	FTTB	2 x 5	50	i	а	n	+ 2 J	n	j	
Коах										
Docsis 3.0	fibre node	1,2	160.000	S	a	j	j	n	n	
Docsis 3.1	fibre node	10	160.000	S	a	j	j	n	n	
Docsis 3.1 XG-Cable	deep fibre	10	160.000	S	S	j	+ 4 J	n	n	
Glasfaser										
GPON (PMP)	FTTB/H	2,5	20.000	S	а	j	j	n	j	
XG.PON	FTTB/H	10	40.000	S	a/s	j	j	n	j	
XGS.PON	FTTB/H	10	40.000	S	S	j	j	n	j	
TWDM GPON	FTTB/H	4 - 8 x 10	40.000	S	a/s	j	j	4-8 Ops	j	
DWDM GPON	FTTB/H	1000 x 1	100.000	i	S	n	+ 4 J	j	j	
Ethernet P2P	FTTH	n x 100	80.000	i	S	j	j	j	j	

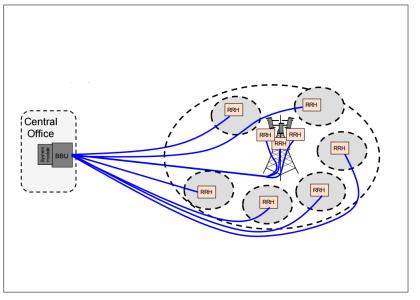
Quelle: WIK.

Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienst

Technologie-Übersicht

Mobilfunk

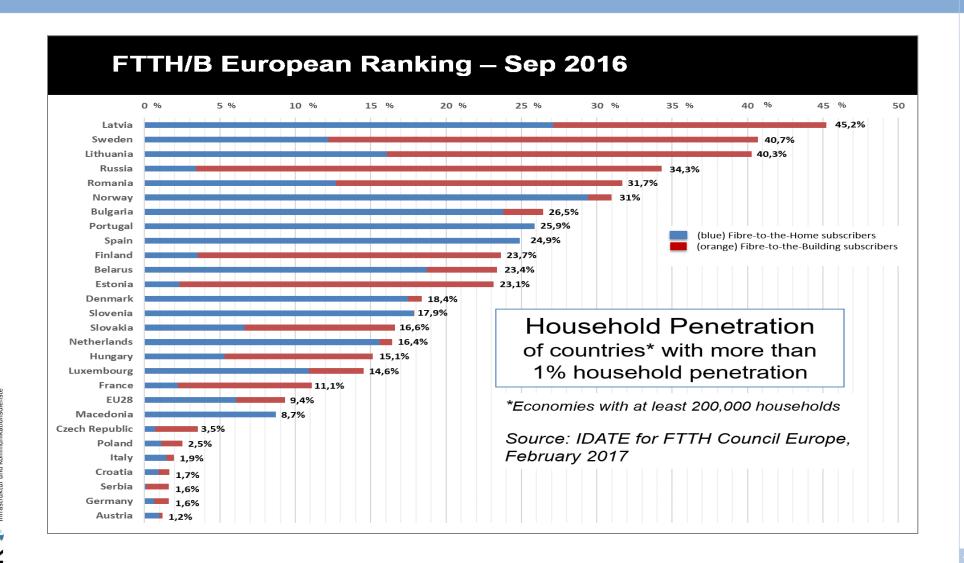

Quelle: WIK.


*Darstellung zeigt max. Downstream-Geschwindigkeiten.

Transportnetz in 5G Mobilfunknetze

"Fronthaul" und "Backhaul"

- Mobil "Fronthaul" (MFH)
 - Verbindung zwischen den "Remonte Radio Heads" (RRHs) Standorten und dem "Base-band Unit" (BBU) Pool
- Mobil "Backhaul" (MBH)
 - Verbindung zwischen dem BBU Pool und dem Kern-Netz

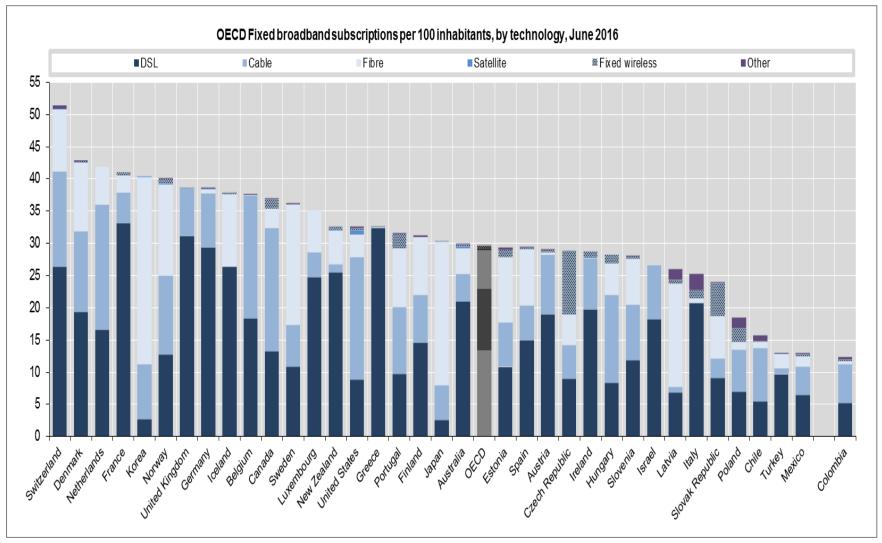

Quelle: Orange (2014).

Wissenschaftliches Institut für Infrastruktur und Kommunikationsdi

Zwischenfazit

- Grundsätzlich auf Sicht fortbestehender Technologiemix
- In Zukunft mehr Glasfaser in der Fläche unerlässlich (Münchner Kreis: Basisinfrastruktur 2025)
- Zurückdrängen der Kupferdoppelader, des Coax-Kabels und der Funkverbindung auf kurze/kürzeste Distanzen
- Vectoring am HVt und KVz Zwischenschritt/Übergang technologisch und regional

Deutschland im internationalen Vergleich

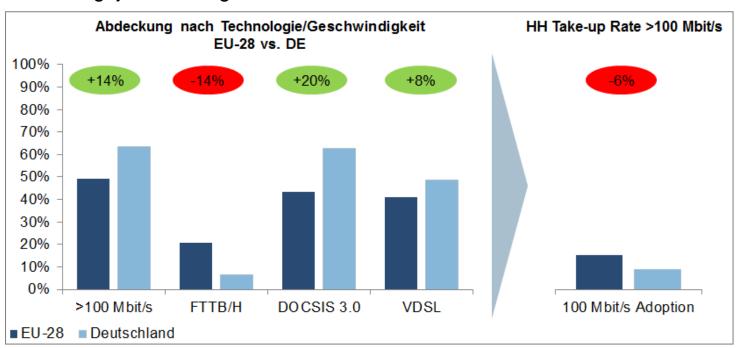


Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste

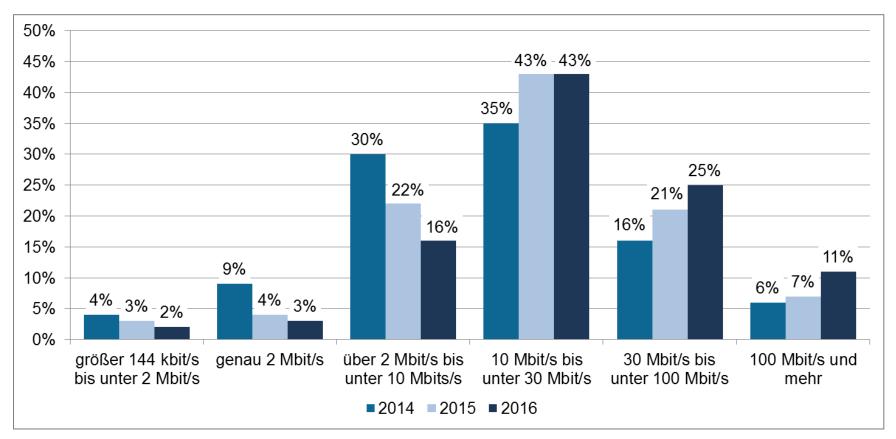
(3) Stand heute

Wissenschaftliches Institut für Infrastruktur und Kommunikationsdiens

Deutschland im internationalen Vergleich



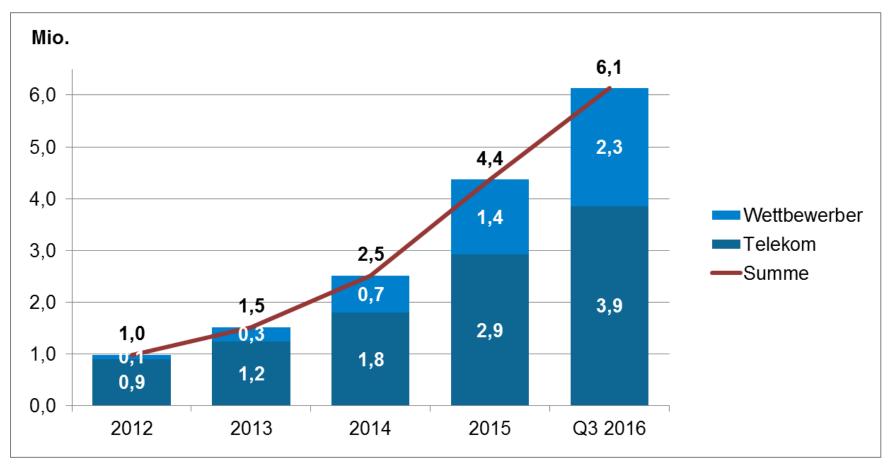
Wissenschaftliches Institut für Infrastruktur und Kommunikationsdie


Deutschland im europäischen Vergleich

Verfügbarkeit und Nutzung von TK-Infrastrukturen

- Deutschland liegt bei Breitbandanschlüssen mit Downloadgeschwindigkeiten >100 Mbit/s mit einer Verfügbarkeit von 63,5% der Haushalte um 14% über dem europäischen Durchschnitt.
- Die Verfügbarkeit ist maßgeblich durch die Kabelnetze bedingt.
- Der tatsächliche Take-up von Anschlüssen mit einer Downloadgeschwindigkeit >100
 Mbit/s liegt jedoch lediglich bei 9%.

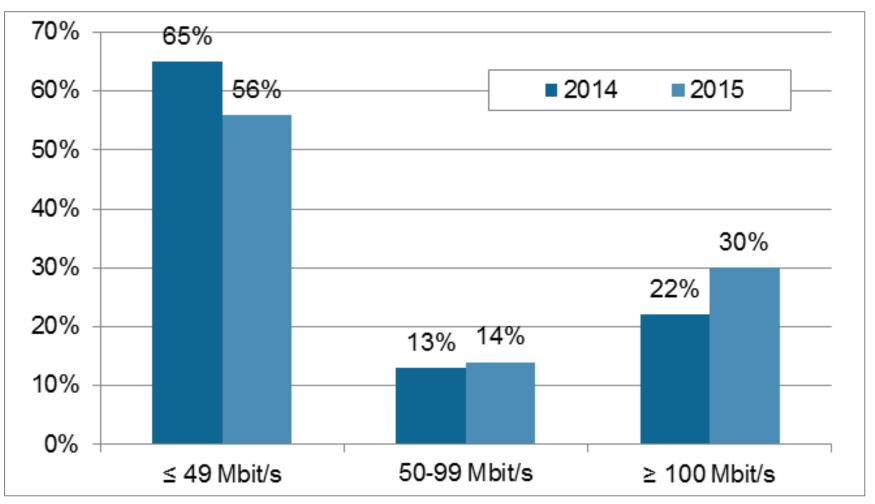
Anteile genutzter Bandbreitenklassen an leitungsgebundenen Breitbandanschlüssen (2014-2016)*



Quelle: WIK basierend auf Daten aus: Bundesnetzagentur (2017): Jahresbericht 2016.

^{*} Absolutzahlen innerhalb der Balken Mio.

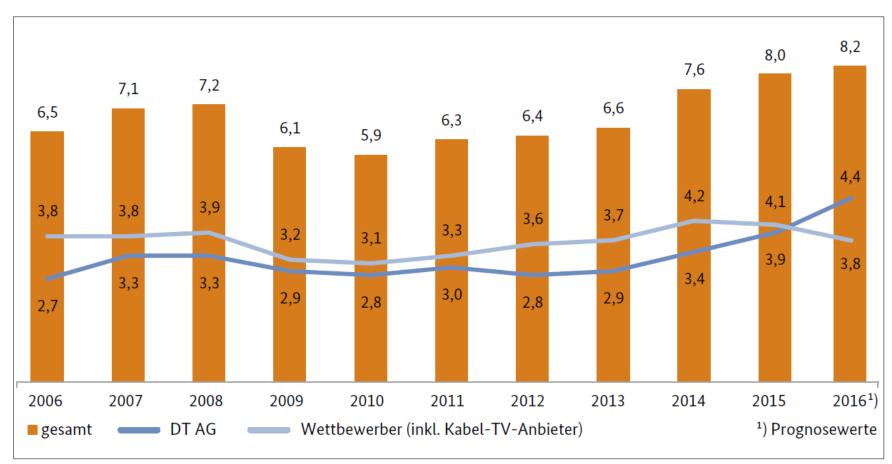
Wissenschaftliches Institut für Infrastruktur und Kommunikationsdi


Entwicklung von VDSL über die Telekom-Infrastruktur in Deutschland (2012-Q3/2016)

Quelle: WIK basierend auf Zahlen aus Geschäftsberichten der Deutschen Telekom AG.

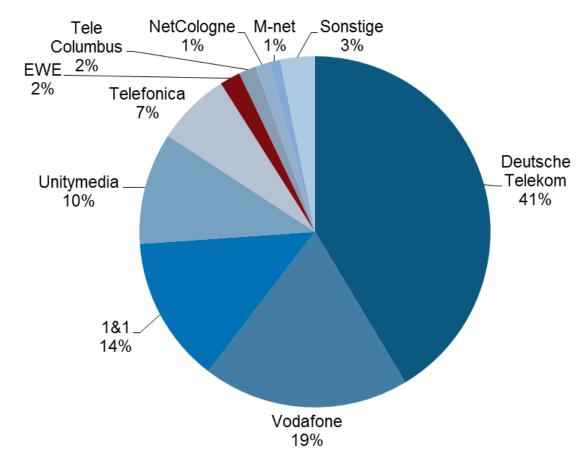
Wissenschaftliches Institut für Infrastruktur und Kommunikationsdiens

Anteile genutzter Bandbreitenklassen im Breitbandkabelnetz (2014-2015)

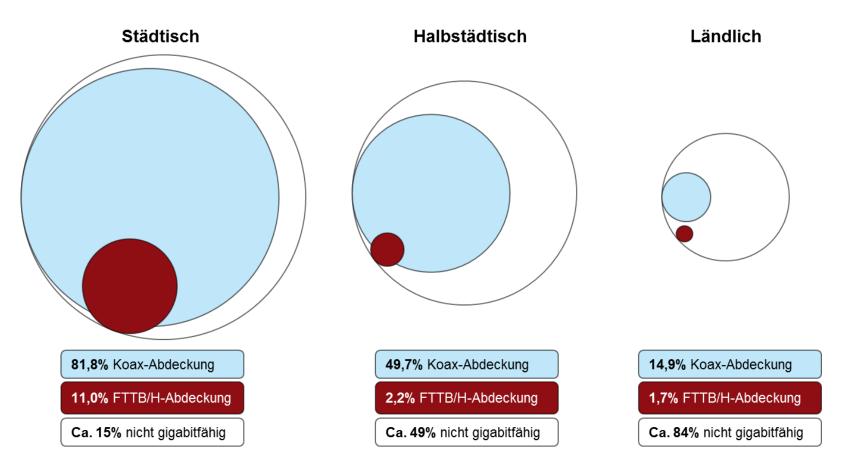


Quelle: WIK basierend auf Daten aus: ANGA (2016): Das deutsche Breitbandkabel 2016.

Wissenschaftliches Institut für Infrastruktur und Kommunikationsdi

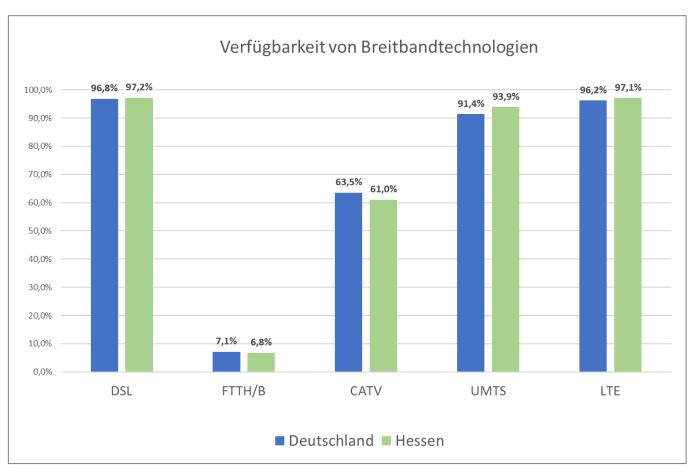

Investitionen in Sachanlagen auf dem Telekommunikationsmarkt in Mrd. €

Quelle: Bundesnetzagentur (2017): Jahresbericht 2016.


Wissenschaftliches Institut für Infrastruktur und Kommunikations

Gesamtmarkt für Breitbanddienste, Marktanteil nach Kunden (Stand Mitte 2016)

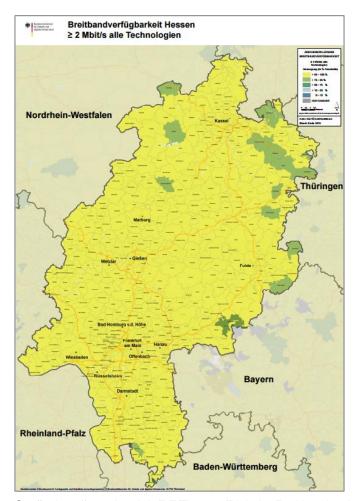
Quelle: WIK basierend auf Daten aus: VATM/Dialog Consult (2016): 18. TK-Marktanalyse Deutschland 2016.

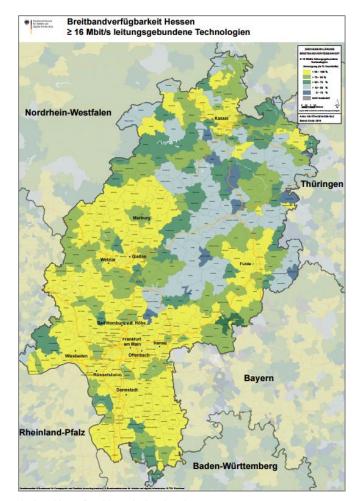

Haushaltsabdeckung mit gigabitfähigen Netzen nach Clustern (Stand Mitte 2016)

Quelle: WIK basierend auf Daten aus: BMVI (2016): Aktuelle Breitbandverfügbarkeit in Deutschland (Stand Mitte 2016) - Erhebung des TÜV Rheinland im Auftrag des BMVI.

Wissenschaftliches Institut für Missensthaftliches Institut für Infrastruktur und Kommunikationsdienste

Hessen im Vergleich




Quelle: WIK basierend auf Daten aus: BMVI (2017): Aktuelle Breitbandverfügbarkeit in Deutschland (Stand Ende 2016) – Erhebung des TÜV Rheinland im Auftrag des BMVI.

Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste

Breitbandatlas

Aktueller Stand - Hessen

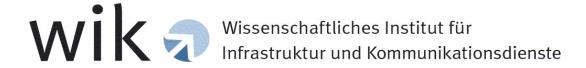
Quelle: http://www.bmvi.de/DE/Themen/Digitales/Breitbandausbau/Breitbandatlas-Karte/breitbandatlas.html.

(4) Fazit

Fazit

- Der Übergang hin zu hochleistungsfähigen Netzen in der Fläche ist gekennzeichnet durch:
 - Vielzahl von Technologien (Kupfer, FTTC, Vectoring, FTTP, FTTB, FTTH, Docsis 3.0, Docsis 3.1, UMTS, LTE, LTE-advanced, 5G, WLAN, ...)
 - Vielzahl von Geschäftsmodellen (regionale Carrier, integrierte Carrier, z. B. DTAG, Vodafone, Geschäftskundenanbieter, Kabelunternehmen, Diensteanbieter, Finanzinvestoren, ...)
 - Vielzahl von regionalen Modellen (City Carrier, Betreibermodelle, Open Access Plattformen, ...)
- Für den raschen Ausbau bisher unverzichtbar:
 - Vielzahl der Ideen, Innovation
 - Wettbewerb als Treiber des Fortschritts

Fazit (I)


- Auf dem Weg zum Internet der Dinge:
 - Rolle der Dienste/Apps/OTTs und Intelligenten Vernetzung prägender
 - Anstieg der mobilen Anwendungen
 - Neue Geschäftsmodelle (Newcomer, betriebsbezogene Lösungen, Kooperationen, ...)
 - Daraus abgeleitet steigende Nachfrage nach Infrastruktur mit steigenden Ansprüchen

Fazit (II)

- Druck auf den Bottleneck Infrastruktur in den n\u00e4chsten Jahren wachsend
- Nachfrager der Industrie 4.0 bestimmt durch Wettbewerbssituation der jeweiligen Branche
 - Konvergenz?
 - Konsolidierung?
 - Kommerzielle Lösungen?
 - Newcomer?

WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH

Postfach 2000

53588 Bad Honnef

Tel.: +49 2224-9225-0

Fax: +49 2224-9225-68

eMail: info@wik.org

www.wik.org